ON THE SOLUTION OF THE THIRD BOUNDARY PROBLEM
FOR AXIALLY-SYMMETRIC REGIONS

L, N. Polyanin UDC 536.21

We present a variational method for solving a problem concerning the temperature field dis-
tribution inside a two-dimensional axially-symmetric region assuming convective heat trans-
fer on its boundary.

Consider the heat conduction equation
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for an infinite homogeneous rod with a uniform distribution of heat sources, on whose surface there is given
the condition

V.-T+~3:~T!r=0-' (2)
Putting u(r, ¢) = T(r, ¢)/T*, we represent an approximate solution of Eq. (1) in the form
u (I", CP) ~ 2 Cplly, (r! q)) (3)
k=1

Using the variational principle due to Ritz, we obtain the following linear system {1] for determining
the coefficients ck:
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where Top = f(¢) is the equation of the coatour T,

To solve the problem stated above with a direct use of the boundary condition (2) is rather involved
gince the choice of the system of trial functions is in this case conjugate to an arbitrary combination of
first integrals of the partial differential equation corresponding to the given boundary conditions, these
integrals, moreover, being of a fairly complicated form [1]. Therefore, we select the set of trial func-
tions {uk} to satisfy,not the boundary condition 2), but a boundary condition of the first kind

ujp=0(gp) (8)

where the unknown function 8(¢) is defined by an iterational process:
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Thus as functions satisfying the condition (8) we can take the set
r2k

f2k

uh(r’ (p):l"“ [1—'9(@)]) k:l, 2,...,71. (10)

Initially, putting o = <, we obtain [1]

r2
o)
We may now use the distribution u® e, @) to determine the value of the boundary gradient Anu(o) and thus
find the peripheral distribution of u(r, ) in a first approximation:

6, <¢>=~%1/1+ (%)2 (12)

where the prime indicates differentiation with respect to ¢.

(s, §) = 1— (1)

In this approximation the temperature field in a section of the rod is describable by a linear combina-~
tion of a set of the functions

er

f2k
The temperature Tr and the center of the rod may be determined from a balance relationship for a
portion of the rod of unit length:

us) (r, @) =1— [1—8, (9] (13)

9,8 = — AT, j& Vi 404, (14
T
where
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If we consider a limiting approach to a cylinder, we can show that lima, = 2/(1— (2/Bi)?, where Bi
n—-o

= aro/?\ is the Biot number for a cylinder of radius r;,, In addition, 8; = 2/Bi, i.e., the expressions (12)
and (15) become exact solutions for o = const.

We remark, in concluding, that the solution of the problem considered here can even be generalized
to the case where the heat transfer coefficient o is angle dependent, providing it is symmetric with respect
to the coordinate origin selected, since the trial functions in the form (10) have zero derivatives at the
point r = 0,

NOTATION

T is the temperature at the rod ceater;
rand ¢ are the polar coordinates;
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ay is the density of the heat release sources;

A is the thermal conductivity of the rod;

f(o) is the distance from the center to the boundary of the region;
B(p) is the temperature of the boundary;

o is the heat transfer coefficient;
s is the area of the rod cross section;
v is the number of the iteration cycle.
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